Reactions of the class II peroxidases, lignin peroxidase and Arthromyces ramosus peroxidase, with hydrogen peroxide. Catalase-like activity, compound III formation, and enzyme inactivation.
نویسندگان
چکیده
The reactions of the fungal enzymes Arthromyces ramosus peroxidase (ARP) and Phanerochaete chrysosporium lignin peroxidase (LiP) with hydrogen peroxide (H(2)O(2)) have been studied. Both enzymes exhibited catalase activity with hyperbolic H(2)O(2) concentration dependence (K(m) approximately 8-10 mm, k(cat) approximately 1-3 s(-1)). The catalase and peroxidase activities of LiP were inhibited within 10 min and those of ARP in 1 h. The inactivation constants were calculated using two independent methods; LiP, k(i) approximately 19 x 10(-3) s(-1); ARP, k(i) approximately 1.6 x 10(-3) s(-1). Compound III (oxyperoxidase) was detected as the majority species after the addition of H(2)O(2) to LiP or ARP, and its formation was accompanied by loss of enzyme activity. A reaction scheme is presented which rationalizes the turnover and inactivation of LiP and ARP with H(2)O(2). A similar model is applicable to horseradish peroxidase. The scheme links catalase and compound III forming catalytic pathways and inactivation at the level of the [compound I.H(2)O(2)] complex. Inactivation does not occur from compound III. All peroxidases studied to date are sensitive to inactivation by H(2)O(2), and it is suggested that the model will be generally applicable to peroxidases of the plant, fungal, and prokaryotic superfamily.
منابع مشابه
A review on plant peroxidases
Plant peroxidase (EC: 1.11.1.7) a heme-containing protein which is widely used in plants, microorganisms and animals. This two - substrate enzyme, catalyze the hydrogen peroxide into water with oxidation of many organic and inorganic substrates that all of them can be used to measure enzyme activity. Although it’s specific substrate is hydrogen peroxide. Calcium and at least four disulfide bo...
متن کاملOxidation of indole-3-acetic acid by dioxygen catalysed by plant peroxidases: specificity for the enzyme structure.
Indole-3-acetic acid (IAA) can be oxidized via two mechanisms: a conventional hydrogen-peroxide-dependent pathway, and one that is hydrogen-peroxide-independent and requires oxygen. It has been shown here for the first time that only plant peroxidases are able to catalyse the reaction of IAA oxidation with molecular oxygen. Cytochrome c peroxidase (CcP), fungal peroxidases (manganese-dependent ...
متن کاملA review of structural properties, metabolic function and measurement of peroxidase activity
The production of reactive oxygen species occurs during the natural metabolism of oxidative-breathing cells. Among reactive oxygen species, hydrogen peroxide is more dangerous to cell life due to its long half-life, but it is meanwhile an important regulatory molecule in redox signaling in living things. Peroxidases are one of the key antioxidant enzymes that are widely distributed in nature an...
متن کاملThe role of distal tryptophan in the bifunctional activity of catalase-peroxidases.
Catalase-peroxidases are bifunctional peroxidases exhibiting an overwhelming catalase activity and a substantial peroxidase activity. Here we present a kinetic study of the formation and reduction of the key intermediate compound I by probing the role of the conserved tryptophan at the distal haem cavity site. Two wild-type proteins and three mutants of Synechocystis catalase-peroxidase (W122A ...
متن کاملThe functional role of the key residues in the active site of peroxidases.
Peroxidases are haem-containing enzymes which catalyse the reduction of hydrogen peroxide by different organic substrates. Plant, fungal and bacterial peroxidases are evolutionarily related and constitute the plant peroxidase superfamily, which can be divided into three structural classes. Class I, of prokaryotic origin, includes cytochrome c peroxidase (CCP); class I1 contains secretory fungal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 277 30 شماره
صفحات -
تاریخ انتشار 2002